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Abstract Protein dynamics on the millisecond time scale

commonly reflect conformational transitions between dis-

tinct functional states. NMR relaxation dispersion experi-

ments have provided important insights into biologically

relevant dynamics with site-specific resolution, primarily

targeting the protein backbone and methyl-bearing side

chains. Aromatic side chains represent attractive probes of

protein dynamics because they are over-represented in

protein binding interfaces, play critical roles in enzyme

catalysis, and form an important part of the core. Here we

introduce a method to characterize millisecond conforma-

tional exchange of aromatic side chains in selectively 13C

labeled proteins by means of longitudinal- and transverse-

relaxation optimized CPMG relaxation dispersion. By

monitoring 13C relaxation in a spin-state selective manner,

significant sensitivity enhancement can be achieved in

terms of both signal intensity and the relative exchange

contribution to transverse relaxation. Further signal

enhancement results from optimizing the longitudinal

relaxation recovery of the covalently attached 1H spins. We

validated the L-TROSY-CPMG experiment by measuring

fast folding–unfolding kinetics of the small protein CspB

under native conditions. The determined unfolding rate

matches perfectly with previous results from stopped-flow

kinetics. The CPMG-derived chemical shift differences

between the folded and unfolded states are in excellent

agreement with those obtained by urea-dependent chemical

shift analysis. The present method enables characterization

of conformational exchange involving aromatic side chains

and should serve as a valuable complement to methods

developed for other types of protein side chains.
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Conformational transitions are intimately tied to protein

function. Numerous reports have shown that transiently

populated high-energy states play important roles in

enzyme catalysis (Cole and Loria 2002; Eisenmesser et al.

2002; Sprangers et al. 2005; Boehr et al. 2006) or ligand

binding by conformational selection (Malmendal et al.

1999; Brüschweiler et al. 2009). Intermittent transitions

between different conformations generally lead to modu-

lation of NMR parameters, such as the chemical shift

(Gutowsky and Saika 1953) or residual dipolar couplings

(Igumenova et al. 2007; Vallurupalli et al. 2007), resulting

in exchange contributions to transverse relaxation rates.

Biologically relevant exchange correlation times often fall

in the range of milliseconds, which can be probed by NMR

relaxation dispersion methods, such as the R1q (Akke and

Palmer 1996) or Carr-Purcell-Meiboom-Gill (CPMG)

experiment (Carr and Purcell 1954; Meiboom and Gill

1958) and variants thereof (Loria et al. 1999a, b; Igume-

nova and Palmer 2006). These experiments provide a

powerful means of characterizing exchange processes in

terms of the exchange rate, kex, the relative populations of

the exchanging states, pi, and the difference in chemical

shift, Dx, or residual dipolar coupling between them. In

addition to the applications mentioned above, relaxation

dispersion methods have proven very successful in
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studying protein folding, including characterization of

transition states as well as intermediate states (Grey et al.

2006; Neudecker et al. 2006; Teilum et al. 2006b;

O’Connell et al. 2009; Korzhnev et al. 2010). To date,

experiments have been designed to probe conformational

exchange at specific sites in proteins, including the back-

bone (Akke and Palmer 1996; Loria et al. 1999a, b; Hill

et al. 2000; Mulder and Akke 2003; Lundström and Akke

2005a, b; Igumenova and Palmer 2006; Lundström et al.

2008, 2009a) and side-chain aliphatic (Lundström et al.

2009b; Hansen et al. 2012), carbonyl/carboxyl (Paquin

et al. 2008; Hansen and Kay 2011), and methyl groups

(Mulder et al. 2002; Brath et al. 2006; Baldwin et al. 2010;

Otten et al. 2010).

Aromatic residues are prevalent in protein binding

interfaces, where they contribute significantly to the bind-

ing free energy (Bogan and Thorn 1998; Lo Conte et al.

1999; Birtalan et al. 2010). His and Tyr also play promi-

nent roles in enzyme catalysis (Bartlett et al. 2002). Fur-

thermore, aromatic side chains make up a significant

proportion of the protein interior, and therefore provide an

attractive means of probing the dynamics of the hydro-

phobic core in the native state (Wüthrich and Wagner

1975), as well as the formation of the core in protein

folding reactions. Thus, there is great incentive to extend

the existing repertoire of CPMG-type experiments to probe

also aromatic side chains in proteins.

We have previously introduced a method for fractional

(50 %), site-specific 13C labeling of proteins using 1-13C1-

glucose or 2-13C1-glucose, which produces samples with

isolated 13C spins thereby eliminating unwanted relaxation

pathways and coherent magnetization transfer via one-

bond couplings (Teilum et al. 2006a; Lundström et al.

2007). Here, we present a sensitivity-enhanced CPMG

relaxation experiment for measuring millisecond confor-

mational exchange of aromatic side chains in selectively
13C labeled proteins, based on longitudinal- and transverse-

relaxation optimized spectroscopy, denoted L-TROSY

(Pervushin et al. 1998; Loria et al. 1999b; Pervushin et al.

2002; Eletsky et al. 2005; Weininger et al. 2012). Figure 1

outlines the pulse sequence for the L-TROSY-CMPG

relaxation dispersion experiment for aromatic 13C spins.

We applied the L-TROSY-CPMG experiment to char-

acterize fast folding–unfolding of cold-shock protein B

(CspB) from Bacillus subtilis (Schindler et al. 1995) under

native conditions. CspB was expressed in Escherichia coli

cultured on medium containing 1-13C1-glucose as the sole

carbon source, resulting in enrichment of 13C into the d
positions of Phe, d1 and e3 of Trp, and d2 and e1 of His.

CspB contains 7 Phe, 1 Trp, 1 His, but no Tyr.

Figure 2 shows the relaxation dispersion curves

acquired using the L-TROSY-CPMG experiment for 13C-

labeled aromatic side chains. As observed from the

comparison with the corresponding data obtained using a

regular (i.e. non-L-TROSY) relaxation-compensated (rc)

CPMG experiment (Loria et al. 1999a), TROSY-selection

achieves significant reduction of the natural linewidth,

resulting in increased precision of the measured transverse

relaxation rates and vastly improved dynamic range of the

relaxation dispersion; see inset of Fig. 2a and Fig. S1. The

TROSY effect is expected to be optimal at static magnetic

field strengths of approximately 14–15 T, as calculated

based on the chemical shielding anisotropy of benzene

(Veeman 1984). At 11.7 T, the transverse relaxation rate of

the TROSY line is approximately 30 % of the transverse
13C autorelaxation rate. TROSY is expected to provide

sensitivity enhancement for larger proteins with a rota-

tional correlation time of sc C 13 ns (Weininger et al.

2012). CspB has sc = 4.4 ns at 25 �C, implying that in this

case TROSY does not provide any sensitivity enhancement

in and of itself. However, longitudinal relaxation optimi-

zation (Pervushin et al. 2002; Eletsky et al. 2005; Wein-

inger et al. 2012) offers significant sensitivity enhancement

per unit time, already for a small protein like CspB. In

particular, 13C sites located nearby 1H spins that exchange

with solvent, e.g. d1 of Trp or d2 and e1 of His, reach gains

in signal-to-noise of up to 50 % in the case of CspB. This

enhancement is greater than that (10–35 %) documented

previously for the larger protein Gal3C (Diehl et al. 2010;

Weininger et al. 2012), presumably due to the greater

extent of solvent exposure of the aromatic residues in CspB

compared to Gal3C. Sensitivity enhancement by L-opti-

mization is expected to increase progressively with

molecular weight and static magnetic field strength. As

previously described in detail, careful control of the water

and aliphatic magnetizations is required in order to obtain

accurate relaxation data and optimal sensitivity enhance-

ment using L-optimized experiments (Weininger et al.

2012). In the pulse sequence presented here (Fig. 1), water

and aliphatic 1H magnetizations are aligned along ?z dur-

ing the CPMG, t1 evolution, and acquisition periods.

Significant dispersion profiles were obtained for 9 out of

11 aromatic residues in CspB. The data are adequately

represented by a global two-state (folded/unfolded) model

using the Carver-Richards equation (Carver and Richards

1972; Palmer et al. 2001), with kex = 528 ± 52 s-1 and a

population of the unfolded state of pU = 2.3 ± 0.2 %

(Fig. 2a–d). By contrast, the relaxation data obtained using

the rc-CPMG sequence (Fig. 2a, inset; Fig. S1) suffer

severely from the fast transverse relaxation of the averaged
13C doublet (roughly a factor of two greater than that of the

spin-state selective TROSY line), and are clearly not of

sufficient quality to warrant further interpretation.

In the context of the L-TROSY-CPMG experiment, it is

critical to recognize that the decay of antiphase coherences

(e.g. 2CyHz) can be affected by strong coupling between
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the 1H spin covalently attached to the monitored 13C spin

and neighboring 1H spins, which makes the effective R2

rates depend on the refocusing frequency mcp also in the

absence of conformational exchange (van Ingen et al.

2009). In the case of aromatic spin systems, such aberrant

dispersions can become significant if strong scalar coupling

occurs between vicinal 1H spins (e.g. 1Hd1 and 1He1 in

Phe) for which 3JHH & 8 Hz, whereas weaker coupling

constants (e.g. 4JHH & 2 Hz, across the ring) do not cause

any significant problems irrespective of the frequency

difference between the coupled 1H spins, in agreement with

previous results (van Ingen et al. 2009). His d2 and e1 and

Fig. 1 Pulse sequence of the L-TROSY-CPMG relaxation dispersion

experiment for measuring conformational exchange of aromatic side

chains in specifically 13C labeled proteins. All pulses are applied

along the x-axis unless otherwise indicated. Narrow (wide) solid bars
indicate rectangular high-power 90� (180�) pulses. Wide open bars
indicate composite 180� pulses. Wide grey bars indicate 180� pulses

in the CPMG elements, which have attenuated power (by 6 dB). Solid
semi-ellipses represent shaped pulses. Narrow semi-ellipses on 1H are

90� EBURP2 shapes (Geen and Freeman 1991) centered at 1.9 ppm

with a bandwidth of 6.6 ppm. The wide semi-ellipse on 13C represents

a 180� REBURP pulse (Geen and Freeman 1991) with a bandwidth of

40 ppm. 13C is decoupled during acquisition using GARP (Shaka

et al. 1985). The delays sa, sb and seq are set to 1.5, 1.4 and 5 ms,

respectively. The pulses flanking the CPMG blocks purge non-

refocused magnetization remaining as a consequence of the variation

among aromatic sites in the 1JHC coupling constant (Vallurupalli et al.

2007). The magnetizations from water and aliphatic 1H spins are

aligned along the ?z axis whenever possible, including the CPMG

blocks. The phase cycle is: /1 = 4(x), 4(-x), /2 = (y, -y), /3 =

(x, -x), /4 = (y, x, -y, -x), /5 = (-y), /rec = (x, -y, -x, y, -x,

y, x, -y). Pulsed field gradients G1–6 are employed to suppress

unwanted coherences and artifacts, while GC and GH are encoding

and decoding gradients, respectively, for echo/anti-echo coherence

selection, obtained by inverting the signs of /5, GC and the even-

numbered phases of the receiver (Palmer et al. 1991; Kay et al. 1992).

Gradient durations (in ms) and power levels (G/cm) are set to

(duration, power level): G1 = (1.0, 10); G2 = (0.5, 8); G3 = (0.5,

14); G4 = (0.5, 16); G5 = (0.5, –24); G6 = (0.5, 18); GC = (1.0,

54); GH (0.5, 27.018). For every second t1 increment, /4 and the

receiver were incremented

Fig. 2 Representative 13C aromatic L-TROSY-CPMG relaxation

dispersion profiles acquired on a 0.4 mM sample of CspB in

10 mM HEPES pH 7.0 at 25 �C and static magnetic field strengths

of 11.7 T (blue) and 14.1 T (red). Data are shown for residues F15d*

(a), F38d* (b), W8d1 (c) and H29e1 (d). The inset in panel a shows

the corresponding data acquired with the rc-CPMG sequence. The

solid lines in (a–d) represent global fits of the folding–unfolding

model to the experimental data. Relaxation delays where chosen so as

to get the same signal decay (about 50 %) in all experiments,

resulting in delays of 60 ms (L-TROSY-CPMG) or 30 ms

(rc-CPMG). Supplementary Information Figure S1 shows results for

all residues, including rc-CPMG data and L-anti-TROSY-CPMG data

J Biomol NMR (2012) 54:9–14 11
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Trp d1 1H spins are always weakly coupled to their vicinal
1H neighbors, which are covalently attached to nitrogen

and therefore resonate far downfield. In the case of Phe and

Tyr residues, rapid ring flipping makes it impossible to

determine a priori whether the weak coupling limit applies.

However, numerical simulations using QSim (Helgstrand

and Allard 2004) demonstrate that artifactual dispersion

decays caused by strong scalar coupling level out com-

pletely for mcp C 100 Hz, where the 13C–1H scalar inter-

action is effectively decoupled. Furthermore, the artifactual

dispersion magnitudes are generally limited to

R2(mcp = 0)-R2(mcp ? ?) B3 s-1. These two criteria

serve as useful guidelines for establishing the accuracy of

relaxation dispersions measured for Phe and Tyr.

In CspB, H29e1 and W8d1 both show dispersion steps

of approximately 10 s-1 (Fig. 2c–d). Two out of seven Phe

exhibit dispersions of 4–6 s-1 (as exemplified by F15d,

Fig. 2a), which also can be safely attributed to conforma-

tional exchange. Three remaining Phe rings show smaller

dispersion steps of 2 s-1 (as exemplified by F38d, Fig. 2b),

and 2 rings do not show any appreciable relaxation dis-

persion. All aromatic 13C dispersion curves of CspB reach

a plateau at mcp [ 200 Hz, clearly indicating that the dis-

persions arise from conformational exchange, rather than

from effects of strong coupling. Thus, we conclude that the

present data are unhampered by any strong coupling

between protons and accurately reflect exchange between

folded and unfolded states.

The unfolding rate, kU = 12 ± 3 s-1 (derived from the

fitted parameters: kU = kex�pU) matches perfectly with that

(12 ± 7 s-1) determined previously from stopped-flow

data (Schindler et al. 1995), whereas the folding rates differ

by a factor of two. Notably, it has been observed for CspB

that kU is almost independent of urea concentration,

whereas the folding rate (kF) exhibits a strong urea

dependence (Schindler et al. 1995), indicating that the

former is considerably more robust with respect to varia-

tions in solvent conditions, such as the difference in buffer

composition between the present (10 mM HEPES) and

previous (20 or 100 mM sodium cacodylate; Schindler

et al. 1995; Zeeb and Balbach 2005) experiments. At the

level of individual 13C sites, no deviations from two-state

folding behavior were observed, in agreement with previ-

ous results (Schindler et al. 1995; Zeeb and Balbach 2005).

In the present case, ring flips are expected to be signifi-

cantly faster than the folding–unfolding kinetics. Conse-

quently, the two processes are time-scale separated, such

that CPMG dispersion measurements report only on the

folding–unfolding process, while exchange due to ring flips

in CspB is too fast to be probed by current refocusing rates.

We assessed the accuracy of the chemical shift differ-

ences between the folded and unfolded states determined

from the CPMG dispersions by comparing with shift

differences measured from 1H–13C HSQC spectra of the

folded and unfolded states. 13C chemical shifts of the

unfolded state under native conditions were obtained by

monitoring the urea-dependence of the 1H–13C HSQC

spectrum from 0.5 to 2.5 M urea and extrapolating linearly

to 0 M (Fig. S2). Residue-specific assignments of Phe 13Cd
resonances in the unfolded state were not necessary,

because they all merged to a single overlapped signal.

Figure 3 shows the excellent agreement of the chemical

shift differences extracted from the global fit to the CPMG

dispersion data, compared to the shift differences between

the folded and unfolded states derived from 1H–13C HSQC

spectra. These results demonstrate that aromatic 13C

chemical shift differences between ground (e.g. folded) and

high-energy (e.g. unfolded) states can be determined

robustly from CPMG dispersion experiments, similar to

what has been reported previously for other types of nuclei

(Teilum et al. 2006b; Hansen et al. 2008).

In conclusion, the L-TROSY-CPMG relaxation disper-

sion experiment for aromatic 13C spins provides accurate

information on conformational exchange, including the

aromatic chemical shifts of the transiently populated high-

energy state, and should serve as a valuable complement to

experiments developed for other types of side chains.
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